国内最大的栾树苗基地,你一定不知在哪!

小说:国内最大的栾树苗基地,你一定不知在哪!作者:陵马更新时间:2019-04-20字数:92364

“我看你把精力都放在这方面上了,就是一个大流氓。”云黛儿笑骂道。

山西可以种植红叶李吗?

“呼~我也不想拐弯抹角,在座有三位都是老面孔了,而两位又是年轻人相信都是会更加的果断,不管是解决哪一边的事情我想最快捷的方法莫过于五大隐村联合起来组成一个忍者联军,起码这个忍者联军在晓组织和刘皓解决之前是一体的,你们觉得如何。“自来也的魄力明显很强,也顺着雷影的话直接提出了这个方案。
“死。”一声怒喝,对方弯刀划出一道白色刀光,刀光击中,尸体随之倒地。

众人对这种话题最有兴趣,立刻你一言我一语地说了起来,贺延嗣倒没有干涉他们,只要他们不说汉语,不暴露自己身份,但说无妨。

作者:林冠宏 / 指尖下的幽灵

掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8

博客:http://www.cnblogs.com/linguanh/

GitHub : https://github.com/af913337456/

腾讯云专栏: https://cloud.tencent.com/developer/user/1148436/activities


仅列举一些解决方法,事实的解决方案是非常多的。

这些问题都是面临着有如下的考虑:

  • 内存不足以放下所有的数。
  • 机器CPU的核数不够。
  • ...

问这些问题的意义:

如果能把这些问题答好,必然是综合计算机各方面的知识,从内存到数据结构甚至还涉及到硬件,方法面面。至此,我给它定位是,综合考量一个程序员计算机基础能力的面试题。


一,找出不重复的

2.5亿正整数中找出不重复的整数。

思路一:

分治法 + HashMap (HashMap 不要局限在 Java 语言)

将 2.5 亿个整数,分批操作,例如分成 250 万一批,共100批次。每批使用循环遍历一次,存入 HashMap<int1,int2> 里面,int1 对应这个数,int2 对应它出现的次数,没出现就默认是 1 次。每操作完一批,就进行当前的 HashMap去重操作,读出 int2 > 1 的,排除掉。接下来的批次,以此类推,得出 100,剩下的自然就是不重复的。

好了,我们现在来计算下上面这个方案的双间复杂度,时间 & 空间

时间复杂度250W * 100轮 + 其它批次。对于多核机器,可以启动线程操作。

空间复杂度:使用 int 来进行存每一个数,保证不溢出情况下,那么就是 --> Key + Value : (250W * 4字节,4Byte)/(1024*1024) ~ (Key + 9.5MB) 内存。

思路二:

位图法 Bitmap(一个 bit 仅会是 0 或 1)

对于此题,我们可以设计每两个 bit 位,标示一个数的出现情况。00表示没有出现,01表示出现一次,10表示出现多次。2.5 亿个正整数,首先我们要知道是正整数,我们就不需要考虑负数,也就是无符号,无符号的整形占四个字节

我们以这个为例子,开始计算位图内存。

1B = 8b,4B = 32b,它可以表示的最大的整数是 2^32-1(不溢出),也就是说,我们需要 2^32-1 ~ 2^32来表示这2.5亿个数。我们上面说了,每个状态是两个,那么总共就是2^32*2个位。

那么我们可以一次申请的 位图 内存是:2^32*2 bit ,(2^32*2)/(1024*1024*8) = 1GB 即可。当然,我们也可以加上分治的思路,分批处理,不用直接用 1G,哈哈。

那么这样做的情况下怎样找到这个数呢?我举个例子,例如我们此时读入一个数是:6464对应的所在bit位是:64*2=128,也就是说第 127128 位共同标示了它的出现状态。其他的以此类推。每当我们读出一个数,我们就这样去找到它对应的bit位,先读出bit位的值,再做记录,已经是01的,再次来到,那么就应该修改为10。最后的我们这样得出结果:扫描整个位图,如果是10的,就下标/2得出这个数。

二,找出出现次数最多的

第一题:找出一篇文章中,出现次数最多的单词。

第二题:10亿个正整数找出重复次数最多的100个整数。

思路一:

分治法 + HashMap

没错,分治法 + HashMap 这个方法就是可以用来处理很多 Top K问题的。

对于问题一,其实比较简单,这道题也是我 2016 年腾讯第三轮技术面要求当场写代码的题目。我们可以先判断,这篇文章可能很长,也可能很短,那么我们应该规定一个字数的标志,作为一批的字数限制,例如100个文字。每100个文字是一批的处理极限,我们先读出100个,100以内的就直接全部读出。读出后,打散成字符串,例如英语文章它以空格和一些符号分割。使用split方法就可以打散。此时我们得出一个字符串数组String[] array,有了这个之后就可以参考 找出不重复 问题的解法。每批使用循环遍历一次,存入 HashMap<String,Integer> 里面,string 对应这个数的字符串,Integer 对应它出现的次数,最后最大的自然就是出现次数最多的。下面直接给出个 Demo 函数

// LinGuanHong
public static void search(String limitText){
    String maxWord = "";
    int    maxTime = 0;
    String[] words = limitText.split(" |\.|,");
    int length = words.length;
    HashMap<String,Integer> one = new HashMap<>();
    for(int j=0;j<length;j++){
        Integer number = one.get(words[j]);
        if(number != null){
            number = number + 1;
            /** 找到次数加 1    */
            one.put(words[j],number);
            if(maxTime < number){
                maxTime = number;
                maxWord = words[j];
            }
        }else{
            /** 没找到,赋值 1  */
            one.put(words[j],1);
        }
    }
    System.out.println("maxTime is :"+maxTime+" ; maxWord is :"+maxWord);
}

第二题对应的 分治法 + HashMap

按照前面的案例,我们首先一样是要把这十亿个数分成很多份。例如 1000份,每份 10万。然后使用 HashMap<int,int> 来统计。在每一次的统计中,我们可以找出最大的100个数,为什么只找10万中的100个啊?因为我们有1000份,其它份里面的第二大可能是这份里最小的。这样全部加起来都100*1000个数了。OK,在我们找出这100*1000个侯选数后,继续分治处理,或者直接进行排序,如果直接排序就是10W个数。排序算法可以选快排等之类的,前100个就是结果。

思路二:

位图法 Bitmap

第一题,略。不是纯数字的,不建议采用位图法

第二题:

有了 找出不重复的 的例子做基础。我们此时直接知道这题的 正整数 最大也是只能到 2^32-1,对于这道题,我们不需要乘2,所以我们申请的内存大小也是512MB。这样我们就能使用这个位图把所有数都存进去。如果出现了一次,该bit位 = 1,没有就是0。多次出现的话,我们就不能累加到bit位里面了,因为它最大就是1。这时候我们会发现,出现多次的话,是无法通过bit位进行累加记录的。所以,此题也是不适合采用位图法

实际操作(参考网上)

实际上,最优的解决方案应该是最符合实际设计需求的方案,在时间应用中,可能有足够大的内存,那么直接将数据扔到内存中一次性处理即可,也可能机器有多个核,这样可以采用多线程处理整个数据集。

下面针对不容的应用场景,分析了适合相应应用场景的解决方案。

  • 单机+单核+足够大内存

    如果需要查找10亿个查询次(每个占8B)中出现频率最高的10个,考虑到每个查询词占8B,则10亿个查询次所需的内存大约是10^9 * 8B=8GB内存。如果有这么大内存,直接在内存中对查询次进行排序,顺序遍历找出10个出现频率最大的即可。这种方法简单快速,使用。然后,也可以先用HashMap求出每个词出现的频率,然后求出频率最大的10个词。
  • 单机+多核+足够大内存

    这时可以直接在内存总使用Hash方法将数据划分成n个partition,每个partition交给一个线程处理,线程的处理逻辑同(1)类似,最后一个线程将结果归并。
    
    该方法存在一个瓶颈会明显影响效率,即数据倾斜。每个线程的处理速度可能不同,快的线程需要等待慢的线程,最终的处理速度取决于慢的线程。而针对此问题,解决的方法是,将数据划分成c×n个partition(c>1),每个线程处理完当前partition后主动取下一个partition继续处理,知道所有数据处理完毕,最后由一个线程进行归并。
  • 单机+单核+受限内存

    这种情况下,需要将原数据文件切割成一个一个小文件,如次啊用hash(x)%M,将原文件中的数据切割成M小文件,如果小文件仍大于内存大小,继续采用Hash的方法对数据文件进行分割,知道每个小文件小于内存大小,这样每个文件可放到内存中处理。采用(1)的方法依次处理每个小文件。
  • 多机+受限内存

    这种情况,为了合理利用多台机器的资源,可将数据分发到多台机器上,每台机器采用(3)中的策略解决本地的数据。可采用hash+socket方法进行数据分发。

其他的

例如问:XXXXX中找出最大的一个,最小的一个,最大的几个,最小的几个。这类的就可以使用分治法+最小堆/最大堆秒之。

完矣

编辑:安龙伯马

发布:2019-04-20 18:44:02

当前文章:http://emigration.net.cn/or5e2/19858.html

美人梅东北能种植吗? 市场绣线菊价格最前沿 木槿哪里多? 花石榴树一年开几次花? 哪里有暴马丁香苗批发? 乌桕树冬季落叶吗? 花卉苗木种子价格表 凌霄花的种植方法有哪些?

93664 91933 51579 21791 35883 12828 93695 52235 32060 96231 86540 65438 39637 97581 57469 70064 55805 34827 85144 97874

我要说两句: (0人参与)

发布